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THE DISCRETE ASYMPTOTIC BEHAVIOUR B
/OF A SIMPLE BATCH EPIDEMIC PROCESS :
\

‘L BILLARD,*
H. LACAYO*
. N. A. LANGBERG®, Flovida State University

"l Abstract

A simple epidemic process in which the number of individusls who can
become infected at any point in time is itself a random variable is described. The
discrete asymptotic behaviour of such 3 process is discussed. In particular, the
associated marginal distribution of the limiting process is considered.
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1. Introduction

A simple epidemic process in a closed population consists of susceptible
individuals who may become infective individuals. Suppose initially there are N
susceptibles and a infectives. Recently, Billard, Lacayo and Langberg (1979)
showed how this process may be described in terms of N independent
exponential random variables representing the times between any two successive
occurrences of a new infective.

In this work, the following extension of the simple epidemic process is
considered. When occurrences of infectives in the simple epidemic model are
viewed as realizations of a jump process, each jump is of fixed size one.
However, more generally, the size of the jumps may be a random variable. For
descriptive reasons, we call this extension a simple batch epidemic process. .

Our purpose is to investigate the asymptotic behaviour of a sequence of simple
batch epidemic processes when the population size N goes to infinity. Before
obtaining the main results, we elaborate and introduce some notation.
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26 L. BILLARD, H. LACAYO AND N. A. LANGBERG

2. A simple batch epidemic model o

Let the size of the jumps be represented by the sequence of random variables
Z, i =1,2,---, with Z, taking values {1,2,---}). That is, Z, is the number of
individuals becoming infected at the ith occurrence of infection. Then, the
number of jumps that has occurred until at least k of the susceptible individuals
are infected, is R(k) given by

W R(k)=min{r|§a;k}. k=1,--N.

Clearly, 1= R(k)s k. If D, is the total number of new individuals who have
become infected just before the ith jump, it follows that

0, i=1,
@ D, =

(14 ]

i= 2’. . R(N)'
=1
where initially there are a infectives. Thus (2) implies that after the ith jump
[0=i = R(N)—1] there are (D..,+ a) infectives, and after the R(N)th jump,
there are (N + a) infectives. For convenience, we take a = 1.

We recall that in the simple epidemic process (where Z; =1 always), the
interinfection time T, between the (i — 1)th and ith occurrence of a new infective
is exponentially distributed with parameter proportional to i(N + 1 — i). How-
ever, in the present case, since the jump sizes are themselves random variables,
the conditional mean (interinfection) time is also a random variable. Therefore,
let us define the realizations of the random variable (N, D,), i = 1,-- -, R(N),
as the mean time between the occurrence of the (i — 1)th and ith jump, that is,
E(T.).

We may now define the interinfection time between the (i — 1)th and ith jump
a8 T, = u(N,D)U, i =1,---,R(N), where the U, i=1,---, R(N), are inde-
pendent exponentially distributed random variables with mean one, and where
the U, are independent of the Z, j=1,2,---. It follows immediately that the
total time until there are at least k new infectives, S, may be written as

R{k)
o) S = i' w(N.D)U, k=1, R(N).
We note that the particular case Seonm Sy is lil'l'lply the duration time of the
simple batch epidemic process.
Finally, we denote the total number of new infectives present at time ¢ by

" Xn{t), t >0, with realizations 0,---, N. Then, for every set of positive real

numbers 4, j=1,---,m and a corresponding set of positive integers k, j =
1,:-:,m, we have the relationship
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The discrese asympiotic behaviour of a simple baich epidemic process 7

@ PiXn()Z kpj=1,"-",m}=P(S, S¢,j=1,---,m}.

Hence, it follows that the simple batch epidemic process is uniquely determined
by the u(N,D)), i=1,---,R(N),and the Z, i=1,2,---.

In Section 3, we present a condition which is sufficient to ensure the
convergence in law of a sequence of such processes to a discrete stochastic
process. In Sections 4 and 5, some specific marginal distributions of X(¢) are
investigated.

3. Convergence in law of a sequence of simple batch epidemics

Let X(¢), t >0, be a stochastic counting process. Let there be associated with
X(2) the random variables u (D,) where

0, i=l1,

) D, =
P A i=23,---,

with the Z; being the jump random variables defined in the previous section.

Let Xu(t), t>0, N=1,2,---; be a sequence of simple batch epidemics as
defined in the previous section. On the array of functions u(N,D,),
i=1--- R(N), N=1,2,---, we impose the following condition. For each
value of i,

© limu (N, D))= u(D)as.

where u(D,), i = 1,2, -- -, is a finite positive function. One such family of double
arrays of mean interinfection times satisfying (6) is

(M u(ND)=cN*(N-D)*(D:+1)* i=1,--R(N,N=1,2,---,

where a, B, and ¢ are positive quantities. This family may be viewed as a
generalisation of that suggested by Severo (1969). Another particular case is the
model of McNeil (1972).

Let the waiting times between the (i — 1)th and ith jump be T=u(D:)U,
i=1,2,-.-, where as before the U, are independent exponentially distributed
random variables with mean one, and are independent of the Z, j=1,2,---,
Finally, let us define

® | Si=3 w(DIU, k=12,

where R(k) is as defined in (1). Then, for any arbitrary but finite set of positive
real numbers ¢, j =1,---,m, and positive integers k,, j=1,---,m,
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28 L. BILLARD, H. LACAYO AND N. A. LANGBERG

) PiX(4)Z kpj=1,---,m}=P{S, S4j=1,- - m}.
The following theorem may now be proved.

Theorem. Let Xu(t), t>0, N=1,2,--, be a sequence of simple batch
epidemics as described by the quantities u(N,D,), i =1,---, R(N), and Z,
i=1,2,---. When the condition (6) holds, the joint and the marginal state
probabilities of the X (?) process converge to the corresponding state prob-
abilities of the counting process X(t), ¢ >0.

Proof. We prove the result for the joint state probabilities. The result for the
marginal probabilities is proved analogously. It is sufficient to show that for
every arbitrary but finite set of positive real numbers ¢, j = 1, - - -, m, and positive
integers k,, j=1,---,m,

(10) fim P{Xu()Z kyj=1,--,m}=P(S{ Sgj=1,--.m}).

To prove (10), we recall that R(k; ) is independent of N and is bounded above by
k; The condition (6) implies that - ’

u(N,D)U,=> u(D,)U.

Thus,
R{k )

R
S\ = 3 s(NDYUS 3 p(DIU; =S,

for all j = 1, - - -, m. Therefore,

an imP(S, S4,j=1, - ,m}=PIS, S4j=1,--,m).

Hence, combining (4) and (11), the result (10) follows.

We note that the exponentiality assumption of the interinfection times as well
as the independence between the U, and the Z, i = 1,2, - - -, were not necessary
to prove the theorem. Thus, this theorem may be applied to more general
situations.

4. Distribution of the limiting epidemic process

In this section, a study of the marginal distribution of X(¢) is made. In
epidemic theory, this corresponds to the distribution of the aumber of new
infectives for a large population. It follows that
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PIX(1)2 k} = p{ﬁf" u(D)U S :‘]

@) - 2 P{g w(D)U, s t|R(k)= v} P{R(k)= v}.

Clearly, we may write
PIR(K)= v}-P(g ’~<'“§3. z.ak)

and if the Z, are independent random varisbles

(13) PRE)= 9= 3 p(g' Z- m)P(Z. zk-m).
Therefore, when the Z, are identically distributed, this probability (13) can be
casily evaluated. ‘

The conditional probability term of (12) may be written as

P{‘g w(DIUS (| R(k)= »}

(14) )
'_%P{Z; n(DIU,St|R(k)=v,2Z =z} P(Z =z),

where z =(2,,-+-,2.) is a particular realization of a set of jump statistics
Z=(Z,---,Z,) and where

Z={z:§z.<k and 2:.:&}.

If the Z, are independent identically distributed random variables,
as) P(Z=1)~ n P(Z=1).

To evaluate the remaining term in (14), it is noted that for given R(k) and Z, the
actual jump sizes at each stage are known. Hence, the distribution of u (D) U, is
known foreach i = 1,- - -, ».  the parameters u(D,), i = 1, - - -, », are distinct, an
application of Billard, Lacayo and Langberg (1979), Theorem 1 yields the
desired solution; whilst if the parameters u(D,), { = 1, - -, 5, are not distinct the
solution follows from an application of Billard, Lacayo and Langberg (1980),
Theorem 2. Thus, we obtain the distribution function from (12) and hence the
probability distribution of the number of infectives.

Although we have restricted our attention here to the marginal distribution of
X(#), we note that an explicit form for the finite-dimensional joint distribution of

el R e ;,“?:..'f.'. o
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30 L. BILLARD, H. LACAYO AND N. A. LANGBERG

the process {X(5,),j = 1,---,m} can be easily studied by generalizing (12), (13)
and (14).
5. Examples

There are some particular cases worthy of special attention. Consider first the
distribution of R(k). Suppose that the random variables (Z; — 1) are indepen-
dent and follow a Poisson distribution with parameter A. That is,

PZ=z+1}=e"A"12,2=0,1,---.

Then, from (13) it can be shown that

PR(k)=w}= 3 3 e™a™ " (v=1y"""YY[rt(m—v+1)]

(16) =q(v), say.

Another example of jump processes is when the Z, are independent random
variables taking values 1 or 2 with probability p or g, respectively. This
corresponds to the case in which individuals can become infected in batches of
one or two only. Then,

P{R(k)= y}=P{gz.=k—1.z.=1 or z}+p{2' z =k-2.Z.=2}

= (k r v)pb—l-lql--(zv - kq - W)IV-

Let us now consider special forms for the quantity x (D,). One particular case
is when

#(D)= lim u (N, D)) = lim N*(N = D,y *(mi)™*,
where a, g >0 and where m = E(Z,)>0. That is,

(18) w(D,) = (mi)™.

The equation (12) gives

P{X(t)= k}= 2::. P{‘Z; (mi) U, SllR(k)= viP{R(k)=v},
and for g =1,

Px()zk}=3 p{g iU, s mrl : I;'{R(k )=},

=3 - e yPRK)= v}

by an application of Billard, Lacayo and Langberg (1979), Theorem 1.
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The discrete asympeotic dehaviour of a simple basch epidemic process 31

In some populations, if N is sufficieatly large relative to the number of
infectives, it is reasonable to expect that the infection rate is a constant
independent of the number of infectives. That is,

(20 #(D)= lim u(N,D)) = c.

Then it follows that

PIX(t)2 k) = i. p{cg U, st|R(k)= v} P{R(K) = v}

@y - 2, P(W, S c™'1)P{R(k) = »}

where W, has a gamma distribution with parameters 1 and ».
Finally, the quantity u(D;) may still be a random variable but also indepen-
dent of the number of infectives. That is,

(22) ”(Dc) =D
Then,
PIX()2 k)= i‘ P(Y = DW, S )P{R(k) = )

where W, follows a gamma distribution with parameters 1 and ». For a given
distribution D, this probability can be evaluated. For example, suppose D
follows a Pareto distribution

[(d)-aﬂ'd"",. d>B, aBf>0.

Then, routine but lengthy derivation gives

@3) P(Y S t)=T"'(v)}{y(» t/B)- (B/t)"y(a + v,t/B)},
where

L}
Y(A’f)-Le--“A-'du .

is the tabulated incomplete gamma function.
We note that we may write

X(t)-zz. Z,=0,

where N(t) is the number of jumps that have occurred up to time £. If u (D) = c,
N(t) is a Poisson process with rate ¢~* and thus, if the Z, are independent and

N
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2 L. BILLARD, H. LACAYO AND N. A. LANGBERG

identically distributed, X(¢) is a compound Poisson process. If the (D) are
independent and identically distributed, N(¢) is a renewal process and thus, if
the pairs [Z,x(D.)) are independent and identically distributed, X(¢) is a
renewal reward process (Ross (1970), p. 51), that is s special case of a cumulative
process (Cox (1962), p. 91).
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